EnviroCare

MicroMist ML Micro-fine Lime[™] Semi-dry Injection Systems Patent Numbers 6,060,030 and 6,142,388

SO₂ Removal and Secondary Plume Abatement

Sector and

"We believe that use of calciumbased adsorption to reduce SO₂ in cement plant plumes and the prevention of the accumulation of ammonia in the preheater and mill system is unique and the only viable mechanism for secondary plume abatement. The method can be applied to any preheater or precalciner kiln and is expected to be accepted as BACT for SO₂ removal and plume opacity control." Ronald L. Hawks-Director, Compliance & Engineering,

MicroMist™ Engineered Systems

Proven Process Advancements for Abatement of Reactive Plumes and Reduction of SO₂

The MicroMist ML Micro-fine Lime semi-dry injection system is a proven, cost-effective SO_2 removal and reactive plume abatement technology. The MicroMist ML system (patent pending), has been shown to reduce SO_2 by more than 90 percent, while eliminating the secondary plume resulting from the condensation and reaction of chemicals in the gas stream after leaving the stack.

While many plants have shown they can achieve opacity and mass emissions particulate limits, a secondary or "reactive plume" can form after release to atmosphere, leading to a violation of ambient opacity and visibility limits. This is the case for many pyro-processing applications where reactive chemicals are a by-product of combustion or are present in unstable form in the raw materials.

Benefits of MicroMist ML Micro-fine Lime Injection Systems

Proven SO₂ emissions reduction and compliance

Abatement of secondary or reactive plume

Low capital costs

Low maintenance cost

Low energy consumption

Excellent once-through sorbent utilization

No slurry recirculation

Easily retrofitted in existing GCT

No plant downtime to install

Environmental

Management, Inc.

Quality

EnviroCare MicroMist SO₂ Control Technology

Various industrial processes produce SO_2 and SO_3 by oxidation of sulfur in the fuel and by decomposition and oxidation of sulfides and organic sulfur in raw materials. Conventional dry dust collectors are not able to collect these sulfur compounds and, if not removed, they are released to the atmosphere.

Reactive Plume Phenomenon

Many other gaseous components in the process gas stream (eg. ammonia, chlorides, etc.) can combine with these sulfur compounds as they cool in the emitted gas plume to form a fine, but very visible, particulate. Although this phenomenon may not register as a reportable particulate violation, it may violate other Clean Air laws and affect "good neighbor" policy.

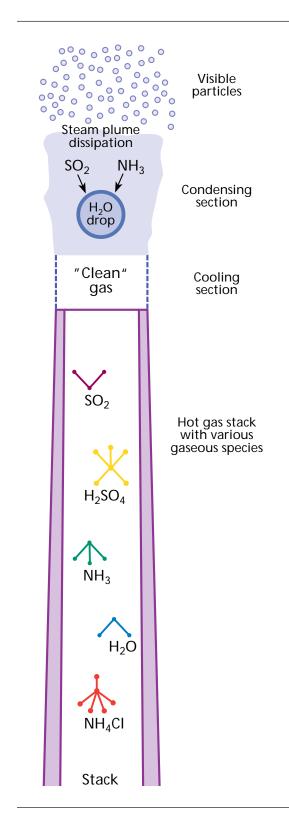
Conventional Approach

The conventional approach to SO₂ reduction has been to install a wet scrubbing system—typically, a forced oxidation limestone scrubber, with its high capital and maintenance costs, and its associated high energy use. Many of these conventional scrubbers require a separate scrubbing vessel, complete with slurry pumps, forced oxidation compressors, slurry recycle loops, mist eliminators and a dedicated control system. Moreover, these systems suffer from corrosion, increased maintenance and plugging due to large slurry particle size.

Another solution has been to scrub the gases with conventional dry adsorption and spray dry systems, but, due to their low

once-through chemical utilization, it requires recycling large quantities of dry material to be cost effective.

Because wet scrubbing is not able to prevent the combination of certain condensing gaseous chemicals, it cannot address the secondary or reactive plume phenomenon, which is a matter of concern due to stricter emissions regulations.


MicroMist Approach to SO₂ Control

The MicroMist ML semi-dry injection system is a proven technology that uses a novel approach to SO₂ reduction. Simply put, it is a novel method of introducing micro-fine lime into the exhaust gas cooling or conditioning system to adsorb SO₂—along with other acid gases—thereby eliminating the secondary plume. It may be installed in a new or retrofit application, often without requiring a separate vessel.

The high SO₂ removal efficiency (>90 percent) rests in the implementation of a micro-fine lime system that relies on an emulsion of fine hydrated lime, which is introduced to the gas stream via a MicroMist delivery system. The size of the suspended lime particle allows it to dissolve into the water droplet at an accelerated rate, enabling efficient removal of SO₂ in the wet state, before the carrier water droplet has evaporated. Other versions of this technology utilize different chemicals such as potassium or sodium, which are naturally soluble and therefore fast reacting.

Secondary Plume Formation Diagram

Reactive Plume Theory

Process exhausts contain gaseous components that, given the right atmospheric and stack gas conditions, will condense and/or combine to form a very visible reactive plume of fine particulate. This particulate is typically ammonium sulfate or ammonium chloride, but can exhibit itself in any one of many sulfate/sulfite/chloride compounds.

The process is simple. In a typical application, gaseous species in the gas stream absorb into the steam plume water droplets and react to form ammonium salts. These highly visible, sub-micron salt particles remain suspended in the atmosphere after the steam plume dissipates (when the water has evaporated).

In some cases, acid aerosols and ammonium salts can form directly, without the need for a steam plume. This can happen if the concentration of ammonium chloride (NH_4CI), ammonia or sulfuric acid (H_2SO_4) is high enough to cause a reaction.

The important thing to note about many persistent, visible reactive or condensed plumes is that they can form in stack discharges that are relatively clear at the stack outlet. This is why secondary plumes—reactive or condensed—are often called "detached" plumes.

MicroMist ML in action

This cement plant shows ondary plume. Note how cl breaches the stack.

After adding micro-fine lin conditioning tower, the se peared. All that's left is the

SO₂ Reduction Methods

 SO_2 is highly soluble in cool water and dissolved calcium ions react quickly with the SO_2 , forming calcium sulfate. Conventional systems react SO_2 with calcium by injecting a slurry of lime and water into the gas stream. As the SO_2 combines with the dissolved calcium ions, more of the calcium in suspension dissolves into the water, combining with other dissolved SO_2 ions, highlighting the importance of dissolving as much of the calcium as possible before the water evaporates.

Conventional systems utilize lime with a particle size in the range of 50 microns. When the slurry suspension is atomized, the suspended particles make up a great percentage of the volume contained by the droplet. This results in the water evaporating faster than the lime can go into solution, making for an incomplete reaction, and resulting in high chemical usage and low SO_2 reduction efficiencies.

The MicroMist ML System

The ML system introduces a micro-ground lime and water suspension to the gas stream. The $Ca(OH)_2$ micro-fine lime emulsion allows the calcium to dissolve and react as fast as the SO_2 is absorbed into the water droplet, resulting in high SO_2 removal.

Due to the size of the micro-fine lime particle (3-10 microns) and the fast reaction time (less than 2 seconds), the system is easily implemented in standard hydraulic or air atomized gas conditioning towers and induct spray systems. Residual aggregates of "dried" micro-fine lime continue to react in the dust collector with any remaining SO₂, adding to the overall SO₂ removal efficiency (>90 percent).

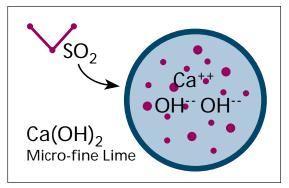
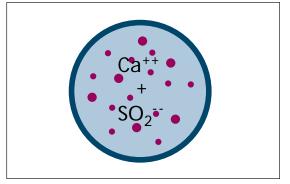
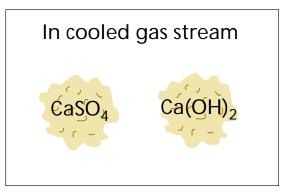




Fig. 1—SO₂ gas is absorbed into water droplets. Ca(OH)₂ ionizes in the water droplet.

Fig. 2—*SO*₂ reacts with Ca⁺⁺ ion inside water droplet.

Fig. 3— "Dried" CaSO₄ salt and residual Ca(OH)₂ left over after H_2O evaporates in GCT.

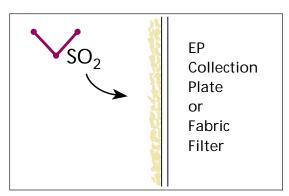
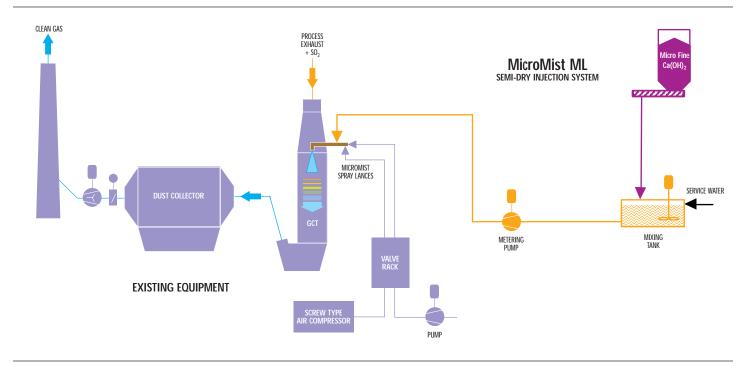
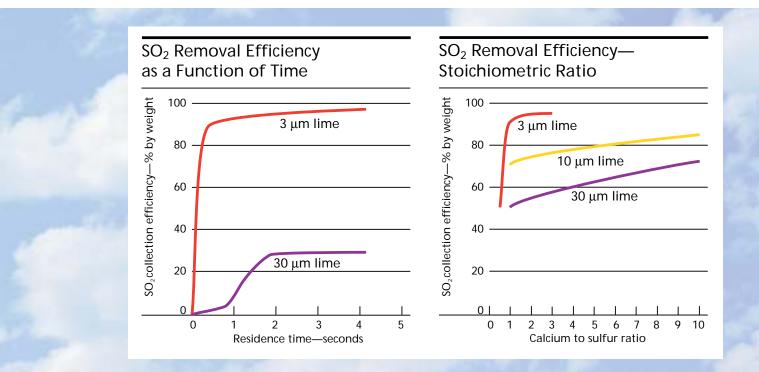


Fig. 4—Residual fine $Ca(OH)_2$ is captured in the dust collector and continues to react with remaining SO_2 gas.

on



very visible signs of a secear the air is where the gas

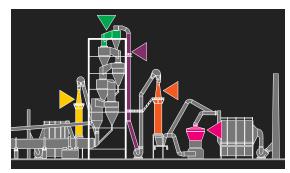

ne through the existing gas econdary plume has disapsteam plume.

MicroMist ML Micro-fine Lime Process & Instrumentation Diagram (Typical)

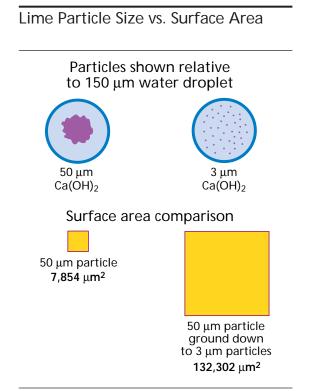
A typical MicroMist ML installation follows this schematic. The setpoint for injection of emulsion is based on the production rate or on emissions sampled at the stack CEM. The setpoint is compared against the flow of micro-fine lime emulsion and a signal to increase or decrease the flow is transmitted to the control system. The emulsion is then injected into the gas conditioning water supply to remove the SO₂. Alarms and interlocks are utilized to ensure efficiency and prevent unnecessary plant downtime.

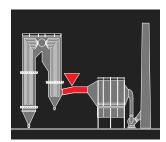
Consulting Services

EnviroCare understands that investigating the sources of pollution and evaluating the potential solutions are complex undertakings. If you require on-site evaluation of your application, we will visit your site, make a determination of the problem and provide suggestions for a solution.


Cost Comparison—MicroMist ML vs. conventional SO₂ scrubber

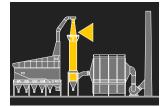
Engineering Assistance


EnviroCare offers technical assistance and engineering analyses required for evaluating, planning and budgeting. This service is carried out directly from our offices in a timely manner. By providing us with your process data, we can supply you with the information required for planning and evaluating.


Typical MicroMist Applications

Processes that can profit from MicroMist ML micro-fine lime semi-dry injection systems include cement works, power plants, municipal and hazardous waste incinerators, non-ferrous metals, lime plants, iron reduction kilns, sintering lines, electric arc and basic oxygen furnaces, glass plants, mining and processing operations and more.

CEMENT DRY PROCESS



POWER PLANT

NON-FERROUS METALS

INCINERATION

To learn more about MicroMist ML Micro-fine Lime semi-dry injection systems, contact:

EnviroCare International

507 Green Island Road, American Canyon, California 94503 • USA Phone: +707.638.6800 • Fax: +707.638.6898

P. Box 8921 Mumbai 400 072 India Phone: 91.22.857.5252/91.22.857.5353 • Fax: 91.22.857.5322 email: envirocare.india@vsnl.com

EnviroCare Australia

Suite 15, 96 Manchester Rd. • Mooroolbark, Victoria 3138 • Australia Phone: +039.727.2022 • Fax: +039.727.2422

> Worldwide Web: www.envirocare.com E-mail: envirocare@envirocare.com

Agents and Representatives throughout the world